
38 The Delphi Magazine Issue 35

Manipulating Runtime
Type Information
by Phil Brown

Most Delphi programmers can
give a reasonable definition

of the private, protected and
public keywords. However, when
asked about the meaning of the
published keyword in a class defini-
tion, many will give the answer ‘It’s
what appears in the object inspec-
tor at design-time.’ Although this is
a correct consequence of the pub-
lished keyword, it is not a correct
definition. The Delphi help file
presents the following information
under Published properties|Pub-
lished components:

‘The visibility rules for pub-
lished components are identical to
those of public components. The
only difference between published
and public components is that run-
time type information is generated
for fields and properties that are
declared in a published section.
This runtime type information
enables an application to dynami-
cally query the fields and proper-
ties of an otherwise unknown class
type.’

So, the consequence of defining
a property in the published section
is purely and simply that Run Time
Type Information (RTTI) is gener-
ated for it and is available in any
Delphi program that uses the class.
The Object Inspector uses this
information, for example, so you
can change component properties
at design-time.

The RTTI stores all the appropri-
ate information for readable,

non-array properties, including
the name, type and any extra data
that may be useful (such as mini-
mum values for integers, maximum
lengths of strings, etc). Defining
variables, functions, procedures,
read-only or array properties in the
published section is not an error
but has no effect and Delphi treats
the definition as if it were public.
Furthermore, to actually get RTTI
generated and stored in the pro-
gram, the class (or an ancestor
class) must be defined within a
scope that has the $M (or $TYPEINFO
verbose alternative) compiler
switch turned on, as in Listing 1.

I have chosen to use the
$TYPEINFO compiler switch in pref-
erence to $M as it is more descrip-
tive and obvious when reviewing
the code at a later date. Note that
any descendants of this class will
have RTTI generated for their pub-
lished properties: it is not neces-
sary to define the compiler switch
again. If you wish to generate RTTI
for a class, you can choose to
descend your class from TPersis-
tent (which is defined with the $M
compiler switch on) rather than
TObject; doing so provides access
to a number of methods related to
RTTI for object streaming.
Although the Delphi help file
declares that ‘There is seldom, if
ever, any need for an application to
directly use the $M compiler
switch’, there are great benefits in
using RTTI in appropriate

circumstances. However, a con-
venient way of ensuring that RTTI
is generated is to descend your
class from TPersistent.

All forms and components have
TPersistent as an ancestor as it is
this class that provides the ability
for these objects to save their state
to disk, using TFiler descendants
TReader and TWriter. It is the
interoperation of these classes
that saves components and forms
to disk in the DFM file format using
RTTI. It is possible to provide your
own TFiler classes and then use
them to store TPersistent descen-
dants, but this is a convoluted
process as it is has been designed
more for internal rather than appli-
cation use. Even so, all Delphi
developers wishing to understand
RTTI further should acquaint
themselves with the TPersistent
class and the methods it provides.

Importing Data Using RTTI
One area in which RTTI can be very
useful is in importing and export-
ing data. Most applications contain
classes that represent real-world
(‘problem domain’ or ‘business’)
entities, such as the classic suppli-
ers, customers and orders. Very
often, these classes will be stored
in a database, using any suitable
means, but equally often an appli-
cation must provide some way of
importing or exporting this data to
a data file in some format, possibly
because the application needs to
share data or simply to populate
the database. Traditionally, this
file format is customised for each
application: it may be comma sepa-
rated, with the data fields in a
known sequence, the application
may even use a binary format con-
taining a memory image of the
object or database record, or an
application-specific format may be
used. In these situations, each
application must provide its own

{$TYPEINFO ON}
type
TPerson = class (TObject)
private
FName: String;
FAge: Integer;
procedure SetAge (Value: Integer);

Published
// properties with RTTI follow
property Name: String read FName write FName;
property Age: Integer read FAge write SetAge;

end;
{$TYPEINFO OFF}

➤ Listing 1: Defining a class to generate RTTI.

July 1998 The Delphi Magazine 39

means of importing and exporting
data and the developer must code
a new system each time it is
required.

There is a common flaw with
each of the data formats previ-
ously described: none of them pro-
vides for any means of version
control. Using a comma separated
field format, the number and
sequence of the fields in the incom-
ing file must exactly match that
which is expected. If the structure
varies, incorrect values will be
read into fields. Furthermore, each
database table (or object) would
need to have import/export rou-
tines coded individually. The ideal
would be a structure independent
file format (and a means of import-
ing and exporting it) which applied
to all entities in the system.

The developers of Delphi had to
consider the exact same issues
when they were designing the
means by which form and compo-
nent properties were stored in the
.DFM file. This file had to remain
valid even if a new version of a con-
trol was released, and the file
structure had to be applicable to
all components without extra
effort being required on the part of
the developer. These require-
ments were met using RTTI and we
can do a similar thing for our own
applications.

With respect to version inde-
pendence, assuming the name of a
class remains the same between
versions, the only data-related
things that can change about it are
field values and properties. It is a
good general rule never to expose
field values as simple scalar vari-
ables but as properties, even if you
don’t provide read and write rou-
tines. This provides for data encap-
sulation and future-proofs your
application. An object could be
described as a list of all property
name and value pairs. For example,
consider the TPerson class defined
earlier. An instance of this class
could be entirely represented as:

Name=Fred Bloggs
Age=35

This could be stored as a text file
and later interpreted, populating

the Name and Age properties of a
new TPerson object to recreate an
exact replica of our original object.
Consider what now happens if we
add an Address property to our
class. If we have a text file contain-
ing the above data, it is still possi-
ble to interpret the file, setting the
Name and Age properties, but leav-
ing the Address property contain-
ing its default value (blank). If our
new version of TPerson happened
to drop the use of the Age property,
our interpreting routine could rec-
ognise this fact and simply not
attempt to do anything, but still
could set the Name property that
remains valid. Thus our file
achieves version independence.
Delphi uses the exact same scheme
when storing form information in a
.DFM file. If the data had been
stored in a simple comma sepa-
rated file, removing or adding a
new property would mean that
data stored in the ‘old’ format
could not be imported without
prior conversion.

There are two issues left to con-
sider before our file format is com-
plete: how to describe a new class
(ie that the data that follows is for a
TPerson class) and how to cope
with the situation when a property
changes type (eg from an integer to
a double). To cope with the first
issue, we can precede the above
data with a delimiter that declares
the class name (let’s say that we
will use BEGIN and END keywords to
be consistent with Delphi). We will
delegate the task of converting
data into the correct type to the
routine that must actually set the
properties. Listing 2 is a complete
example of a file that contains the
information for importing two
complete objects into the system.

So far, all we have described is a
file format, which could be inter-
preted easily enough using

BEGIN TPerson
Name=Fred Bloggs
Age=35
END
BEGIN TPerson
Name=John Doe
Age=48
END

➤ Listing 2: A complete file
describing two objects.

traditional techniques. However,
using RTTI we can write a single
routine that can import any object
(or sets of objects) and reuse this
routine in different projects, thus
reducing the effort involved each
time. This routine must be able to
create a class of the appropriate
type given the name of the class,
set a number of named properties,
and finally save it. Delphi provides
a couple of methods which handle
the creation of a class given the
class name, RegisterClass and Get-
Class. These only work with
descendants of TPersistent, how-
ever, so if you want to use your
own class hierarchy descended
from TObject or some other class
you will need to provide similar
functionality.

Saving the object depends on
each individual application. A well
designed application will have a
Save method on each main system
object, which is responsible for
storing that object in the host data-
base, in which case saving an
object is simple. Lesser systems
may have a custom storage tech-
nique for each class and so a way
of implementing this would be to
have a large set of if..then clauses
that test the class type and then
execute some appropriate code.
We are interested in a general pur-
pose, application-neutral compo-
nent that reads data, so we will
have an event that is called each
time an object has been read in. It
will be the responsibility of the
host application to decide what to
do with each imported object.

We still need some code to actu-
ally set the appropriate property
to the required value. This is
where RTTI comes in: without it,
the only way would be to have a
large table or set of if...then
clauses, one for each property on
each object that is to be read in.
This would need to be maintained
as classes changed, not a task for
the faint-hearted. Instead, we can
request Delphi to access the infor-
mation for the property with the
required name, and then call a
method using this information to
set the property value.

The unit that provides access to
the RTTI structures for each class

40 The Delphi Magazine Issue 35

is called TypInfo. This small unit
defines a few record structures
and some procedures and func-
tions to manipulate them. It does,
however, make copious use of
pointers and the implementation
is mainly in assembler, so unless
you are very familiar with these it
is probably best not to attempt to
understand how it all works.

The main function in TypInfo
that we will use is GetPropInfo. The
definition for this is as follows:

function GetPropInfo(
TypeInfo: PTypeInfo;
const PropName: string):
PPropInfo;

This takes a pointer to a TTypeInfo
structure and a property name,
and returns a pointer to a
TPropInfo record structure, which
contains all of the information that
we need. To get at the required
TypeInfo structure for the object
we can just use the TObject.Class-
Info method. One caveat in using
this method is that for classes that
do not have RTTI available, it
returns nil and so we must protect
ourselves against this when using
the GetPropInfo function, which
insists on being passed a valid
TypeInfo structure.

The TypInfo unit provides a
number of methods for setting a
property value, dependent upon
the type of the property and it is
vital that the appropriate method
is called. To actually set a property
value, we must check the PropType
member which tells us the type of
the property (integer, string, enu-
meration etc) and then call
SetStrProp, SetOrdProp, SetFloat-
Prop or SetVariantProp. There is
also a SetMethodProp procedure
but this deals with methods rather
than data values and so we are
unlikely to require it for reading
our data files.

Enumerated types (which
includes Boolean properties) are
set within the RTTI routines using
integer values. The first enumer-
ated value corresponds to integer
value 0, the second to 1 and so on
(these are the same values as
returned by the Ord function for an
enumerated value). The above

technique is a reasonable way of
importing data, but we can go one
step further to make our input file
more descriptive and more resil-
ient in the face of changing enu-
merations.

Within the Object Inspector,
when setting a property that is an
enumerated type (such as the
BorderStyle property of many
components), it presents the
actual enumeration name for the
current property value, such as
bsNone or bsSingle. This implies
that the RTTI contains information
for enumeration names, and this is
indeed the case. The GetEnumValue
function returns the ordinal value
of the string value of an enumera-
tion name passed to it, using the
TPropInfo.PropType member to
access the appropriate set of
strings. Therefore, we can modify
our import routine to cope more
ably with enumerated types, so
that we can interpret lines in our
input file such as Sex=sxMale rather
than Sex=1. This is obviously more
resilient to changes in the enu-
meration list and more descriptive
into the bargain.

We have shown how to update
an object’s properties using RTTI,
but we have not validated the data
in any way, for example to ensure
that the incoming data contains
reasonable values. Fortunately,
there is a very simple mechanism
that can be used to achieve this:
property accessor routines.

When the RTTI sets a property
value using the above routines, it
obeys the write rule that was pro-
vided for the property, so if a pro-
cedure is used (as in TPerson.Age in
the code example in Figure 1), this
procedure will be called, passing
the appropriate value. Therefore,
simply providing standard acces-
sor methods allows you to control
the values provided through RTTI
manipulation. Very often, these
accessor methods will already
have been provided as part of a
good class design to protect prop-
erty values. This validation of
incoming values is a good reason
for using RTTI to import data
rather than a custom routine to
decode a specific file format, as the
same rules for correctness

checking are used by both the
application and the import
routine.

Exporting Data Using RTTI
Exporting data is a feature
required by many applications.
Regardless of the format used
(comma separated values, spread-
sheet or a custom text or binary
format), RTTI can be used for
export as neatly and efficiently as
for import.

If you have looked at the TypInfo
unit you will see a set of converse
routines to match those provided
for setting property value, all
beginning with the Get prefix. We
will use these routines to create a
TPropertyExporter component that
will write out a file containing any
number of objects of any type in a
format suitable to be read in by the
TPropertyImporter component.

The essence of the exporter
component is simple: its construc-
tor takes a filename for the destina-
tion file containing object data,
and has a single method, WriteOb-
ject, which is passed the object to
be written out. A property on the
class, PropertyList, contains a list
of names of properties of the
object to be written. If empty, then
the class writes out all properties
for the object.

The WriteObject method is obvi-
ously the key one for this compo-
nent and is split neatly into two
routines. The first has the task of
determining the property names
to be exported if the PropertyList
is empty. A list of all property
names is obtained as an array of
pointers to TPropInfo structures
with the TypInfo.GetPropInfos rou-
tine. There is a slight complication
to this routine, in that it must be
passed an area of memory that it
will populate. This memory area
must be of the correct size, calcu-
lated by finding out the number of
properties of the object using the
PropCount member of the TTypeData
record structure returned from
GetTypeData. Essentially we need to
provide a dynamically sized array
from which we can then extract the
property names, but we must be
careful to free the memory we allo-
cated. The listing to extract the

July 1998 The Delphi Magazine 41

property names is too long to
appear in full here, but the source
code for the PropertyExporter
class can be found on the disk.

The PropertyListnow contains a
list of all properties for the object
that are required to be exported;
this will either have been defined
by the developer (by pre-
populating the list), or by the
system (by determining all pub-
lished properties from the RTTI).
The next step is to write out the
object header consisting of BEGIN
followed the class name, and then
to access and output each prop-
erty in turn.

Our TPropertyExporter class
uses a routine which we have pro-
vided to convert any property
value into a string. This routine
accesses the property information
from RTTI, determines the type of
the property and then calls an
appropriate routine to extract the
required value and convert it into a
string. For an enumerated type the
GetEnumName routines is used to
convert an enumeration integer
value into a suitable string.

Some developers may be con-
cerned about the overheads of
using RTTI access routines to fetch
and set property values. A look at
the source code in the TypInfo unit
should reassure them, as it con-
sists mainly of some small and
tight assembler routines. Remem-
ber also that RTTI is used exten-
sively by the Delphi development
environment and so it is very much
in its interests to have efficient
code. Using the access routines it
is possible to update tens of thou-
sands of properties per second,
performance that even the most
cynical developer should find
acceptable.

Using RTTI For
Database Manipulation
To further demonstrate the range
of applications to which RTTI may
be put, it may be useful to discuss
how it may be used to write classes
that can save themselves to an SQL
database by generating their own
SQL code at runtime. Using this
technique, it is possible to write a
class that is able to load and save

itself to and from a database and
any descendants of this class will
automatically inherit this ability.
Centralising access provides for
very robust database manipula-
tion, as it can be guaranteed that
all appropriate fields are popu-
lated, regardless of where in the
program a load or save operation
is made. As each object ‘knows’
the fields it requires to store its
property values, this scheme can
even be extended to ensure that
the correct fields are defined in the
database during application
startup, again helping to provide
for a resilient application.

Essentially, the technique is to
use RTTI to extract a list of all
properties for an object and to
build up a valid SQL statement
defining these property names and
values. In order for this technique
to work, the class must be
compiled with RTTI generated, all
data that is required to be saved
must be exposed in the published
section and the database must be
defined with a table matching the
class name (or simple derivative,

42 The Delphi Magazine Issue 35

say by stripping the leading T) and
with fields that match the pub-
lished properties in name and
type. Fortunately, most of these
requirements are easily achieved
and desirable.

We will provide a new abstract
class, called TSQLObject, which
provides protected SQLInsert,
SQLUpdate and SQLSelect routines,
which return a string containing an
appropriate SQL command. Any
object that descends from TSQLOb-
ject that publishes its properties
and has access to a database con-
nection will automatically be able
to load and save itself. Note that
any class would need to provide an
appropriate WHERE clause for the
SQLUpdate command, as the choice
of primary key is table specific. Of
course, it is entirely possible (and
desirable) to provide a descen-
dant class of TSQLObjectwhich pro-
vides standardised Load and Save
methods, with knowledge about
primary keys and then descend all
your application classes from this.

For example, our TPerson class
earlier could generate the follow-
ing SQL statements (using the first
published property as the primary
key, and the class name less the
leading T for the table name):

INSERT INTO Patient (Name, Age)
VALUES (“Fred Bloggs”, 35)

UPDATE Patient SET Name="Fred
Bloggs", Age=35 WHERE
Name="Fred Bloggs"

A TSQLObject is provided on the
disk to demonstrate the possibili-
ties. As all load and save opera-
tions require generating a list of
published properties, this is
cached in a private string list the
first time it is required and re-used
for all future operations. This is a
useful performance optimisation.

Manipulating
Complex Properties
In the examples above, all pub-
lished properties are used for load
and save operations. It is possible
that a class has some properties
that are inherently complex, such
as arrays, sets or even other
classes. In these cases there is no
built-in mechanism to obtain a
string representation of the prop-
erty, and you might think that it is
not possible to use these RTTI
mechanisms to manipulate them.
In these situations, a very elegant
solution presents itself: the natu-
rally complex property should not
be published, but public, and a new
property provided in the published
section exclusively for the pur-
pose of presenting a string repre-
sentation of the complex property.
This property should use read and
write accessor routines and these
should simply be used to provide a
convenient textual representation
of the complex property.

It may also be true that a prop-
erty is required to be published
that is not required to be saved to a

type
TPet = (Dog, Cat, Rabbit, Hamster);
TPets = set of TPet;
TComplexObject = class
private
FPets: TPets;
function GetPets: String;
procedure SetPets (Value: String);

published
property Pets: TPets read FPets write FPets stored False;
property PetStr: String read GetPets write SetPets;

end;
function TComplexObject.GetPets: String;
begin
Result := '';
if Dog in Pets then Result := Result + 'D';
if Cat in Pets then Result := Result + 'C';
if Rabbit in Pets then Result := Result + 'R';
if Hamster in Pets then Result := Result + 'H';

end;
procedure TComplexObject.SetPets (Value: String);
begin
FPets := [];
if Pos ('D', Value) <> 0 then FPets := FPets + [Dog];
if Pos ('C', Value) <> 0 then FPets := FPets + [Cat];
if Pos ('R', Value) <> 0 then FPets := FPets + [Rabbit];
if Pos ('H', Value) <> 0 then FPets := FPets + [Hamster];

end;

➤ Listing 3: Providing textual representations of complex properties.

file or database. As all of our rou-
tines so far have manipulated the
entire set of published properties,
how can we prevent these unde-
sired properties from appearing in
our output files or SQL com-
mands? We could use a naming
scheme to identify them, but there
is a much more elegant way. Each
property declaration can option-
ally be followed by a stored False
directive, which is used for compo-
nents to indicate properties that
should be displayed in the Object
Inspector but not actually
streamed to disk. We can use this
information for exactly the same
purpose for our published proper-
ties, and ignore those that are
defined stored False. The
IsStoredProp function in TypInfo
returns a Boolean value which we
can respond to appropriately
whenever we use a published
property. The general technique of
manipulating complex properties
is demonstrated in Listing 3.

Conclusion
This article has demonstrated how
to generate, access and manipu-
late Run Time Type Information.
Although designed primarily for
streaming forms and components
to and from disk at design-time
within the Delphi environment,
RTTI can also be used to provide
runtime objects with flexible capa-
bilities for a variety of purposes.
Using it appropriately can result in
smaller programs that are quicker
to develop, more robust and
require less maintenance and the
ease of use makes it a valid tech-
nique for all Delphi developers.

Phil Brown is a senior consultant
with Informatica Consultancy &
Development, specialising in OO
systems design and training.
When not orienting objects he
enjoys sampling fine wine. Con-
tact him as phil@informatica.uk.com

	Importing Data Using RTTI
	Exporting Data Using RTTI
	Using RTTI For Database Manipulation
	Manipulating Complex Properties
	Conclusion

